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Shape from Metric

Differential property
e.g. Riemannian metric

Surface
best displays the intrinsic geometry 
at the macroscopic level
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Flat torus

flat torus

C1 embedding

[Borrelli, Jabrane, Lazarus, Rohmer & Thibert 2012]



Flat torus

flat torus

C1 embedding

[Borrelli, Jabrane, Lazarus, Rohmer & Thibert 2012]



Flat torus

Piecewise smooth  
      embeddingC0



Flat torus



Flat torus

[H. Segerman 2015 Shapeways]
[R. Ferréol 2008 mathcurve.com]

http://mathcurve.com
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Piecewise smooth embedding

Microscopic scale
Isometry problem in  
Euclidean plane.

Macroscopic scale
Gauge field theory.
Variational problem.
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Gauge theory

i

j
ri j

connection derivative

�� ��Q j �Qi� ri j
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Gauge theory
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Gauge theory

Q j �Qi� ri j = + +



Gauge theory
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Gauge theory

Q j �Qi� ri j = + +
�� ��2

✏

����
����
2 ����

����
2 ����
����
2

✏1 ✏2 ✏3

Anisotropic norm

fidelity regularization
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Energy functional
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all edges

Dirichlet energy

connection



Energy functional

Q j �Qi� ri j
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✏

X

all edges

Ginzburg—Landau energy

gauge (boson) field
fermions



Energy functional

Q j �Qi� ri j
�� ��2

✏

X

all edges

Ginzburg—Landau energy

anisotropic norm



Emergent surface

Microscopic scale
Setting up gauge field

Macroscopic scale

Q j �Qi� ri j
�� ��2

✏

X

all edges

minimize

ri j
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target metric



The bunny metric



The round torus metric

target metric



The round torus metric



Immersion

Locally Embedded Surfaces
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Immersion

Immersed

Pinch point



Pinch points



Pinch points

Pinch point
Pinch point

smoothing
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Pinch points
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Pinch points



Pinch points
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Emergent surface

Microscopic scale
Setting up gauge field

Macroscopic scale

Q j �Qi� ri j
�� ��2

✏

X

all edges

minimize

ri j

Invisible to pinch points

Can we ensure immersion  
for such emergent isometric 
surfaces?

YES



Descriptions of rotations

Rotation matrices SO(3)

Unit quaternions SU(2)

Q 2 R3⇥3, Q¸Q = I , det(Q) = 1

v 7!Qv

q = a+ bi+ cj+ dk 2 H, |q|= 1

3D rotation

3D rotation v 7! qvq



Descriptions of rotations

Rotation matrices SO(3)

Unit quaternions SU(2)

Q 2 R3⇥3, Q¸Q = I , det(Q) = 1

v 7!Qv

q = a+ bi+ cj+ dk 2 H, |q|= 1

v 7! qvq

3D rotation

3D rotation square root of the rotation
represent the same rotationq,�q



Descriptions of rotations

rotation matrices

unit quaternions
SU(2)

SO(3)
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rotation matrices
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Q
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Descriptions of rotations

rotation matrices

unit quaternions

q

�q

Q

SU(2)

SO(3)

“spinors”

“rotations”



Descriptions of rotations

rotation matrices unit quaternions
“spinors”“rotations”



Descriptions of rotations

rotation matrices unit quaternions

target metric

“spinors”“rotations”
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Descriptions of rotations
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Descriptions of rotations

rotation matrices unit quaternions
“spinors”“rotations”
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for such emergent isometric 
surfaces?

YES



Emergent surface

Can we ensure immersion  
for such emergent isometric 
surfaces?

YES

How? And why do spinors work?



Immersion

Immersion Theory of Surfaces
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Topologist’s mug

regular
homotopy

stay immersed  
throughout



regular
homotopy

Topologist’s mug
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Topologist’s mug



regular
homotopy

Topologist’s mug
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Regular homotopy classes



Closed strips

Immersion?

Regular homotopy 
class?



Closed strips

closed strip
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There are 2 regular homotopy classes for oriented closed strips.
Theorem (Closed strips)
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Closed strips

There are 2 regular homotopy classes for oriented closed strips.
Theorem (Closed strips)

Figure-8

Figure-0



Closed strips
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A disk can be perturbed into an immersion if and only if 
its boundary strip is a Figure-0.

Theorem (Immersibility of Disks)
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Immersibility of disks

A disk can be perturbed into an immersion if and only if 
its boundary strip is a Figure-0.

Theorem (Immersibility of Disks)

Figure-8

pinch point

=)
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Immersion condition

Definition
A vertex is said to be almost immersed if its one-ring triangle strip  
is a Figure-0.

Figure-0



Immersion condition

Definition
A vertex is said to be almost immersed if its one-ring triangle strip  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Immersion condition

Definition
A vertex is said to be almost immersed if its one-ring triangle strip  
is a Figure-0.

Definition
A simplicial surface is almost immersed if all vertices are almost 
immersed.  That is, all contractable strips are Figure-0.
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Global strips

Two immersions are regular homotopic if and only if 
their global strips share the same Figure-8/0 type.

Theorem (Regular homotopy)



Global strips
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Can we construct surfaces that are  
guaranteed to be immersions?
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Original question

Can we “control” the Figure-8/0 type  
of all strips?

• Algebraic description of the strip types.

• “Rims” measure deviation from the desired  
strip configuration.

• Encode the above algebraic objective in  
the gauge field for the spinors.
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The space of closed strips
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The space of closed strips

�
closed strips

 
The space of closed strips

is a vector space over      .Z2

M



Figure-8/0 function

M R3

f : M ! R3



Figure-8/0 function

f : M ! R3

q f (�) =

®
0
1

if      is realized as a Figure-0�

if      is realized as a Figure-8�

q f :

�
closed strips

 
! Z

2



Figure-8/0 function

q f (�1) = 0



Figure-8/0 function

q f (�1) = 0
q f (�2) = 0



Figure-8/0 function
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[�1 \ �2] = 1
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Figure-8/0 function

q f (�1) = 0
q f (�2) = 0

[�1 \ �2] = 1
q f (�1 + �2) = 1



Figure-8/0 function

q f (�1 + �2) = q f (�1) + q f (�2)+ [�1 \ �2]

q f (�1) = 0
q f (�2) = 0

[�1 \ �2] = 1
q f (�1 + �2) = 1



Quadratic forms

q f (�1 + �2) = q f (�1) + q f (�2)+ [�1 \ �2]

is a quadratic form associated with the scalar product [·\ ·]q f

on the       vector space                            .Z2
�
closed strips

 

There are many quadratic forms associated with the same scalar 
product when the space is over a finite field of characteristic 2. 
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Quadratic forms

Suppose          are two quadratic forms associated with             ,q, q̃ [·\ ·]

q(�1 + �2) = q(�1) + q(�2) + [�1 \ �2]

q̃(�1 + �2) = q̃(�1) + q̃(�2) + [�1 \ �2]�
ä

(q� q̃)(�1 + �2) = (q� q̃)(�1) + (q� q̃)(�2)

The difference of two such quadratic forms is a linear functional.



Quadratic forms

The difference of two such quadratic forms is a linear functional.

The collection of these quadratic forms is an affine space  
parallel to                               .

�
closed strips

 ⇤

The geometric representations of elements in
�
closed strips

 ⇤
are rims.
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Rims



Rimmed surface

A rimmed surface             consists of( f , s)

• a surface realization

The Figure-8/0 function for a rimmed surface             is given by( f , s)

q( f ,s) = q f + s

• rims                                       s 2 C1(M ,@M ;Z2) ⇠= C1(M⇤;Z2)⇤
f : M ! R3



Rimmed surface

• The Figure-8/0 type of strips is described algebraically  
by a quadratic form   .q

• With a prescribed    , any surface realizationq

shall be decorated with rims                   .s 2 q� q f

f : M ! R3
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Emergent surface

Microscopic scale
Setting up gauge field

Macroscopic scale

Q j �Qi� ri j
�� ��2

✏

X

all edges

minimize

ri j
and a quadratic form q

|s|= |q f � q|minimize



Lifting rotations to spinors
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ri jRotational gauge field



Lifting rotations to spinors

i

j

Qi

Q j 2 SO(3)

ri j



Lifting rotations to spinors

i

j
ri j

�i

� j 2 SU(2)



Lifting rotations to spinors

i

j

�i

� j 2 SU(2)

±pri j



Lifting rotations to spinors

i

j

�i

� j 2 SU(2)

±pri j⌧i j :=
Spin connection

The sign encodes q



Gauss–Bonnet Theorem
Given � 2
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Gauss–Bonnet Theorem

�̂: S1! M

Represent it as a path
Given � 2

�
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Gauss–Bonnet Theorem

�̂: S1! M

Represent it as a path

Y

�̂

ri j

Given � 2
�
closed strips

 



Gauss–Bonnet Theorem

�̂: S1! M

Represent it as a path

= exp

Ç
2⇡i� i

Z

ˆ�

g

åY

�̂

ri j

geodesic curvature

Given � 2
�
closed strips

 



Gauss–Bonnet Theorem

�̂: S1! M

Represent it as a path

= exp

Ç
2⇡i� i

Z

ˆ�

g

åY

�̂

ri j

Given � 2
�
closed strips

 



Spin Gauss–Bonnet Theorem

�̂: S1! M

Represent it as a path

Y

�̂

⌧i j = exp

Ç å
2⇡i� i

Z

�̂

g

Given � 2
�
closed strips

 



Spin Gauss–Bonnet Theorem

�̂: S1! M

Represent it as a path

Y

�̂

⌧i j = exp

Ç å
⇡i�

i
R
�̂
g

2

Given � 2
�
closed strips

 



Spin Gauss–Bonnet Theorem

�̂: S1! M

Represent it as a path

Y

�̂

⌧i j = exp

Ç å
⇡i�

i
R
�̂
g

2
±

Given � 2
�
closed strips

 



Spin Gauss–Bonnet Theorem

�̂: S1! M

Represent it as a path

Y

�̂

⌧i j = exp

Ç å
⇡i�

i
R
�̂
g

2
(�1)q⌧(�)

Given � 2
�
closed strips

 



Spin Gauss–Bonnet Theorem

�̂: S1! M

Represent it as a path

Y

�̂

⌧i j = exp

Ç å
⇡i�

i
R
�̂
g

2
(�1)q⌧(�)

Given � 2
�
closed strips

 

q⌧ :

�
closed strips

 
! Z

2



Spin Structure

is a quadratic form associated

with            .[·\ ·]

Theorem

q⌧ :

�
closed strips

 
! Z

2



Spin Structure

C1(M ,@M ;Z2) acts (by switching the signs of    )⌧
transitively on the space of such quadratic forms.

is a quadratic form associated

with            .[·\ ·]

Theorem

q⌧ :

�
closed strips

 
! Z

2



Spin Structure

C1(M ,@M ;Z2) acts (by switching the signs of    )⌧

transitively on the space of such quadratic forms.

Given       with a desired metric and Figure-8/0 configurationM q

ri j
⌧i j = ±i j
p

ri j so that q⌧ = q
Rotational connection

Spin connection



Emergent surface

Microscopic scale
Setting up gauge field

Macroscopic scale

Q j �Qi� ri j
�� ��2

✏

X

all edges

minimize

ri j
and a quadratic form q

|s|= |q f � q|minimize



Emergent surface

Microscopic scale

Spin connection

Macroscopic scale

Q j �Qi� ri j
�� ��2

✏

X

all edges

minimize

|s|= |q f � q|minimize

⌧i j



Rim Representation

i

j

�i

� j 2 SU(2)

⌧i j

We can use the spin connection       to measure whether �i ,� j
have consistent chosen signs.

⌧i j
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be the rotation part of              (polar decomposition),(d f )iQi 2 SO(3)
�i 2 SU(2) be any unit quaternion that “squares” to      .Qi

Let                         be a non-degenerate triangular surface,f : M ! R3
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(�1)si j := sgnh� j ,�i �⌧i jiR4



Rim Representation
Theorem [C., Knöppel, Pinkall, Schröder 2018]

be the rotation part of              (polar decomposition),(d f )iQi 2 SO(3)
�i 2 SU(2) be any unit quaternion that “squares” to      .Qi

Let                         be a non-degenerate triangular surface,f : M ! R3

Across neighboring triangles, measure the signature

(�1)si j := sgnh� j ,�i �⌧i jiR4

Then the rimmed surface             has the desired figure-8/0 property
q⌧ = q( f ,s)

( f , s)



Rim Representation

(�1)si j := sgnh� j ,�i �⌧i jiR4

|s| 1
2

X

all edges

��� j ��i �⌧i j

��2
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Emergent surface

Microscopic scale

Spin connection

Macroscopic scale

�� ��2
✏

X

all edges

minimize

⌧i j

� j ��i �⌧i j

gauge field encodes
• metric
• figure-8/0

spinor field encodes
• rotation field (frames)
• rims
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Microscopic scale

Spin connection

Macroscopic scale

�� ��2
✏

X

all edges

minimize

⌧i j

� j ��i �⌧i j



Pinch point resolved



A Disk in Hyperbolic Plane

Hyperbolic disk



A Disk in Hyperbolic Plane

Hyperbolic disk



A Disk in Hyperbolic Plane

Circle Limit III 
— M.C. Escher



A Disk in Hyperbolic Plane



Flat Tori



Visualizing Ricci Flow

Metric modified by Ricci flow



Constant negative curvature surface



Random initial spinors



Constant negative gaussian curvature



Piecewise-smooth isometric immersions

Conjecture
Each regular homotopy class of immersions of a 2D Riemannian  
manifold into        contains a piecewise smooth isometric  
representative.

R3
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Aluminium can
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Turning the sphere inside out

A. Phillips  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Film:Turning a  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1967 / 1987

Film: Outside In
W. Thurston, 
S. Levy,  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G. Francis, 
S. Levy 
1996

Optiverse



Turn the bunny inside out isometrically
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